Acetazolamide Artificial lipidic membranes Mechanism of acid secretory inhibition by Transient conductance changes induced by -- (Hersey, High) (233) 604 pressure in —— (Parisi, Rivas) (233) 469 Acholeplasma laidwaii Aspartate transport Electron microscopy of solubilized Effect of unsaturated fatty acids onmembrane proteins reaggregated with Myin Staphylococcus aureus and on staphylocoplasma pneumoniae glycolipids (Cole et coccal lipid monolayers (Gale, Llewellin) al.) (233) 76 (233) 237Acid secretory inhibition ATPase Mechanism of ——— by acetazolamide Asymmetric distribution of ouabain-sensi-(Hersey, High) (233) 604 tive — - activity in rat intestinal mucosa Active transport (Fujita et al) (233) 404 - of glumate in Streptomyces hydro-ATPase genans. I. Studies on uptake and pool size, Binding of ATP to brain microsomal and their interrelationship (Gross, Ring) Determination of the APT-binding capacity (233) 652and the dissociation constant of the enzyme-Agglutination of erythrocytes ATP complex as a function of K+ concenby calcium phosphate sols (Luly et tration (Nørby, Jensen), (233) 104 al.) (233) 730 **ATPase** Binding of ouabain to Na+-K+-dependent Alanine transport Distinction between galactose and phenyl-- - treated with phospholipase (Taniguchi, Iida) (233) 831 alanine effects on ---- in rabbit ileum (Frizzell, Schultz) (233) 485 ATPase Amino acids Characterization of (Na+ + K+)- - -Selective diffusion of neutral across isolated from embryonic chick hearts and lipid bilayers (Klein et al.) (233) 420 cultured chick heart cells (Sperelakis, Lee) Amino acid absorption (233) 562Rates of absorption of a dipeptide and the ATPase equivalent free -- in various mamma-Effect of hydroxylamine on transport lian species (Lis et al.) (233) 453 - (Sachs et al.) (233) 117 Amino acid accumulation ATPase Cation gradients, ATP and — in Ehr-Effect of urea, sodium and calcium on microlich ascites cells (Potashner, Johnstone) somal — activity in different parts of (233) 91 the kidney (Gutman, Katzper-Shamir) (233) Amino acid transport 133 Effects of Ca²⁺ and Mg²⁺ upon — in rat ATPase renal cortex slices (Brown, Michael) (233) Isolation of an ----- from the membrane 215 complex of the hens' egg (Haaland et al.) Amino acid transport (233) 137 - in Neurospora crassa, IV. Properties ATPase and regulation of a methionine transport Specificity of the ATP-binding site of system (Pall) (233) 201 (Na+ + K+)-activated - from brain Amino acid uptake microsomes (Jensen, Norby) (233) 395 Inhibition of -- by ATP in isolated **ATPase** intestinal epithelial cells (Reiser, Chris-Steady state kinetics of soluble and memtiansen) (233) 480 brane-bound mitochondrial - - (Hamp-Aminohippurate transport mes, Hilborn) (233) 580 Role of fatty acid metabolism on renal ---- in vitro (Maxild) (233) 434 Preparation and properties of an isolated p-Aminohippuric acid plant membrane fraction enriched in (Na+-Renal uptake of — — in vitro. Effects of K+)-stimulated --- (Lai, Thompson),

(233).84

Purification and characterization of (Na+

+ K)- . . . I. The influence of deter-

gents on the activity of (Na+ + K+)-

ATPase in preparations from the outer

ATPase

palmitate and L-carnitine (Barác-Nieto)

muscle. I. General characterization of the

uptake in vitro (Osman, Paton) (233) 666

in rabbit detrusor

(233) 446

α-Aminoisobutyric acid

Transport of ----

medulla of rabbit kidney (Jørgensen, Skou)	parts of the kidney (Gutman, Katzper-
(233) 366	Shamir) (233) 133
ATPase	Calcium adsorption
Purification and characterization of (Na+	Monolayer characteristics and ——— to
+ K ⁺)- ———. II. Preparation by zonal	cerebroside and cerebroside sulphate orien-
centrifugation of highly active (Na ⁺ + K ⁺)-	tated at the air-water interface (Quinn,
ATPase from the outer medulla of rabbit	Sherman) (233) 734
kidneys (Jørgensen et al.) (233) 381	Calcium phosphate sols
ATPase	Agglutination of erythrocytes by ———
Functional properties of ——— bound to and	(Luly et al.) (233) 730
solubilized from the membrane complex of	L-Carnitine
the hen's egg (Etheredge et al.) (233) 145	Renal uptake of p-aminohippuric acid in
ATPase activity	vitro. Effects of palmitate and ———
Relationship between g-strophanthin-bind-	(Barác-Nieto) (233) 446
ing capacity and ——— in plasma-mem-	Carrier mechanism
brane fragments from ox brain (Hansen)	Site of energy coupling in the ——— for β -
(233) 122	galactoside transport (Wong et al.) (233) 176
ATP accumulation	Cation gradients
Cation gradients, amino acid and ——— in	——, ATP and amino acid accumulation
Ehrlich ascites cells (Potashner, Johnstone)	in Ehrlich ascites cells (Potashner, John-
(233) 91	stone) (233) 91
ATP-binding capacity	Cation movements
Binding of ATP to brain microsomal	Intracellular sodium and potassium concen-
ATPase. Determination of the ——— and	trations and net ——— in Chlorella pyre-
the dissociation constant of the enzyme—	noidosa (Shieh, Barber) (233) 594
ATP complex as a function of K+ concentra-	Cell envelope
tion (Nørby, Jensen) (233) 104	in Proteus vulgaris P 18. Isolation
ATP dependence	and characterization of the peptidoglycan
——— of the Ca ²⁺ -induced increase in K ⁺	component (Fleck et al.) (233) 489
permeability observed in human red cells	Cell membranes
(Lew) (233) 327	of a marine pseudomonad, Pseudo-
Benzyl alcohol	monas BAL-31: Physical, chemical and
Binding of ——— to erythrocyte mem-	biochemical properties (Franklin et al.)
branes (Colley et al.) (233) 720	(233) 521
Bi-ionic potentials	Cerebroside
——— of bovine lens capsules and collodion	Monolayer characteristics and calcium ad-
membranes (Takeguchi, Nagaki) (233) 753	sorption to ——— and cerebroside sulphate
Bilayers	orientated at the air-water interface (Quinn,
Selective diffusion of neutral amino acids	Sherman) (233) 734
across lipid —— (Klein et al.) (233) 420	Cerebroside sulphate
Bilayer liposomes	Monolayer characteristics and calcium ad-
Single (Johnson et al.) (233) 820	sorption to cerebroside and ——— orien-
Bilayer membranes	tated at the air-water interface (Quinn,
Physical properties of ——— formed from a	Sherman) (233) 734
synthetic saturated phospholipid in n-	Charophytes
decane (Redwood et al.) (233) I	Quantization of a flux ratio in ———?
Biomembranes	(Findlay et al.) (233) 155
Mechanism of non-electrolyte permeation	Chlorella pyrenoidosa
	Intracellular sodium and potassium con-
through lipid bilayers and through ———	
(De Gier et al.) (233) 610	centrations and net cation movements in
Bladder	Chlorida (Shieh, Barber) (233) 594
Effect on p-nitrophenyl phosphate on the	Chloride
short-circuiting current in the turtle	Effect of luminal pH on the absorption of
(Shamoo) (233) 409	water, sodium and ——— by rat intestine
Brush border	in vivo (Rousseau, Sladen) (233) 591
Histidine influx across ——— of rabbit	Chromatophores
ileum (Chez at el.) (233) 222	Thiocapsa floridana; a cytological, physical
Brush border	and chemical characterization. II. Physical
Localization of fatty acid reesterification in	and chemical characteristics of isolated and
the —— region of intestinal absorptive	reconstituted ——— (Takacs, Holt) (233)
cells (Robins et al.) (233) 550	278
Calcium	Chromatophore membranes
Effect of urea, sodium and on	Thiocapsa floridana; a cytological, physical
microsomal ATPase activity in different	and chemical characterization. I. Cytology

of whole cells and isolated ———— (Takacs,	Erythrocyte membranes
Holt) (233) 258	Binding of benzyl alcohol to ——— (Colley
Collodion membranes	et al.) (233) 720
Bi-ionic potentials of bovine lens capsules	Erythrocyte membranes
and ——— (Takeguchi, Nakagaki) (233) 753	Characterization of microvesicles produced
Conductance changes	by shearing of human ——— (Schrier et al.)
Transient induced by pressure in	(233) 26
artificial lipidic membranes (Parisi, Rivas)	Erythrocyte membranes
*	
(233) 469	Role of unstirred layers in control of sugar
Cytochrome b ₅	movements across—— (Naftalin) (233) 635
Preparation of antisera against and	Fatty acids
NADPH-cytochrome c reductase from rat	Effect of unsaturated — on aspartate
liver microsomes (Raftell, Orrenius) (233)	transport in Staphylococcus aureus and on
358	staphylococcal lipid monolayers (Gale, Lle-
n-Decane	wellin) (233) 237
Physical properties of bilayer membranes	Fatty acid metabolism
formed from a synthetic saturated phos-	Role of — on renal transport of p -
pholipid in ——— (Redwood et al.) (233) 1	aminohippurate in vitro (Maxild) (233) 434
Dimethyl sulphoxide	Fatty acid reesterification
Effect of on nucleoside transport in	Localization of ——— in the brush border
L-cells (Collings, Roberts) (233) 459	region of intestinal absorptive cells (Robins
Dimethylsulphoxide	et al.) (233) 550
	Flux ratio
Effect of ——— on the permeability of the	Quantization of a —————————in charophytes?
lysosomal membrane (Lee) (233) 619	
Dipeptide absorption	(Findley et al.) (233) 155
Rates of ——— and the equivalent free	Folate-methotrexate interactions
amino acid absorption in various mamma-	Model system for the study of heteroex-
lian species (Lis et al.) (233) 453	change diffusion: ———— in L1210 leucemia
Electron microscopy	and Ehrlich ascites tumour cells (Goldman)
Uranyl salts as fixatives for ————. Study	(233) 624
of the membrane ultrastructure and phos-	Galactose
pholipid loss in Bacilli (Silva et al.) (233)	Distinction between ——— and phenyl-
513	alanine effects on alanine transport in rab-
Endoplasmic reticulum	bit ileum (Frizzell, Schultz) (233) 485
Preparation and properties of plasma mem-	β -Galactoside transport
brane and fragments from isolated	Effects of phloretin and synthetic oestro-
rat fat cells (Avruch, Wallach) (233) 334	gens on —— in Escherichia coli (Batt,
Endoplasmic reticular membranes	Schachter) (233) 189
Different properties of glucose-6-phospha-	β -Galactoside transport
tase and related enzymes in rough and	Site of energy coupling in the carrier mecha-
smooth ——— (Stetten, Gosh) (233) 163	nism for ——— (Wong et al.) (233) 176
Energy coupling	Glucose-6-phosphatase
	Different properties of ——— and related
Site of ——— in the carrier mechanism for	
β -galactoside transport (Wong et al.) (233)	enzymes in rough and smooth endoplasmic
176	reticular membranes (Stetten, Ghosh) (233)
L-Epinephrine	163
Nuclear magnetic resonance study of the	Glumate
interaction of — with phospholipid	Active transport of —————————————————in Streptomyces
vesicles (Hammes, Tallman) (233) 17	hydrogenans. I. Studies on uptake and pool
Erythrocytes	size, and their interrelationship (Gross,
Agglutination of ——— by calcium phos-	Ring) (233) 652
phate sols (Luly et al.) (233) 730	Glycine transport
Erythrocytes	by pigeon red cells: Calculation of
Glycine transport by pigeon ———: Calcu-	glycine accumulation ratios by numerical
lation of glycine accumulation ratios by	intergration of entry and exit rate equations
numerical intergration of entry and exit	(Vidaver) (233) 231
equations (Vidaver) (233) 231	Glycolipids
Erythrocytes	Electron microscopy of solubilized Achole-
Properties of the water dissolved membrane	plasma laidwii membrane proteins reag-
proteins of human — — (Hamaguchi,	gregated with Mycoplasma pneumoniae
Cleve) (233) 320	(Cole et al.) (233) 76
Erythrocyte membrane	Gram-positive bacteria
Radioactive label for the (Sears et	Membrane transitions in — (Ashe,
al.) (233) 716	Steim) (233) 810
) \=\JJ) \ I = :	- / (-JJ)

Heteroexchange diffusion	through ——— and through biomembranes
Model system for the study of:	(De Gier et al.) (233) 610
Methotrexate-folate interactions in L1210	Lipid bilayers
leucemia and Ehrlich ascites tumour cells	Selective diffusion of neutral amino acids
(Goldman) (233) 624	across ——— (Klein et al.) (233) 420
Hexosamines	
	Lipid monolayers
Membranes of animal cells. VIII. Distribu-	——. Interactions with staphylococal
tion of sialic acid, ——— and sialidase in the	α-toxin (Buckelew Jr. and Colacicco) (233) 7
L cell (Glick et al.) (233) 247	Lipid monolayers
Histidine influx	Effect of unsaturated fatty acids on as-
across brush border of rabbit ileum	partate transport in Staphylococcus aureus
(Chez et al.) (233) 222	and on staphylococcus ——— (Gale, Llewel-
Histidine uptake	
	lin) (233) 237
Effect of phospholipase and trypsin on	Liposomes
— by mouse brain slices (Kirschmann	Preparation of immunologically responsive
et al.) (233) 644	— with phosphonyl and phosphinyl
Hydroxylamine	analogs of lecithin (Kinsky et al.) (233) 815
Effect of ——— on transport ATPase (Sachs	Liposomes
et al.) (233) 117	Single bilayer ——— (Johnson et al.) (233)
Ileum	820
Histidine influx across brush border of	Lysosomal membrane
rabbit ——— (Chez et al.) (233) 222	Effect of dimethylsulphoxide on the per-
Interface	meability of the ——— (Lee) (233) 619
Monolayer characteristics and calcium ad-	Membrane
sorption to cerebroside and cerebroside sul-	Functional properties of ATPases bound to
phate orientated at the air-water	and solubilized from the ——— complex of
(Quinn, Sherman) (233) 734	the hen's egg (Etheredge et al.) (233) 145
Intestine	Membrane Membrane
Effect of luminal pH on the absorption of	Isolation of an ATPase from the
	complex of the hen's egg (Haaland et al.)
water, Na+ and Cl- by rat ———————————in vivo	
(Rousseau, Sladen), (233) 591	(233) 137
Intestine	Membrane fatty acids
Relationship between concentration and	Correlation between the saturation of———
uptake by rat small ——, in vitro, for two	and the presence of membrane fracture
micellar solutes (Hoffman, Yeoh) (233) 49	faces after osmium fixation (James, Bran-
Intestinal epithelial cells	ton) (233) 504
Inhibition of amino acid uptake by ATP in	Membrane fraction
isolated —— (Reiser, Christiansen)(233) 480	Preparation and properties of an isolated
Lecithin	
	plant ———— enriched in (Na+-K+)-stimu-
Preparation of immunologically responsive	lated ATPase (Lai, Thompson) (233) 84
liposomes with phosphonyl and phosphinyl	Membrane fracture faces
analogs of ——— (Kinsky et al.) (233) 815	Correlation between the saturation of
Lecithin-cholesterol-water	membrane fatty acids and the presence of
Water diffusion in lecithin-water and ———	——— after osmium fixation (James, Bran-
lamellar phases at 22° (Gary-Bobo et al.)	ton) (233) 504
(233) 243	Membrane models
Lecithin-water	Optical properties of ——— at arbitrary
Water diffusion in and lecithin	angles of incidence (Simons, Ciddor) (233) 296
cholesterol-water lamellar phases at 22°	Membrane permeability
(Gary-Bobo et al.) (233) 243	Phospholipid-protein interactions: ——
Lens capsules	correlated with monolayer "penetration"
Bi-ionic potentials of bovine and	(Kimelberg, Papahadjopoulos) (233) 805
collodion membranes (Takeguchi, Naka-	Membrane proteins
gaki) (233) 753	Electron microscopy of solubilized Achole-
Leucocidin	plasma laidlawii reaggregated with
Action of phospholipids and — on the	Mycoplasma pneumoniae glycolipids (Cole
p-nitrophenyl phosphatase of the leucocyte	et al.) (233) 76
membrane (Woodin, Wieneke) (233) 702	Membrane proteins
Leucocyte membrane	Properties of the water dissolved ——— of
Action of phospholipids and leucocidin on	
	human erythrocytes (Hamaguchi, Cleve)
the p-nitrophenyl phosphatase of the ————	(233) 320 M = 1
(Woodin, Wieneke) (233) 702	Membrane proteins
Lipid bilayers	Separation of ——— by polyacrylamide gel
Mechanism of non-electrolyte permeation	electrophoresis (Ray, Marinetti) (233) 787

Membrane structure Microvesicles ---: Reactivity of tryptophan, tyrosine Characterization of — produced by and lysine in proteins of the microsomal shearing of human erythrocyte membranes membrane (Khandwala, Kasper) (233) (Schrier et al.) (233) 26 Mitochondrial ATPase 348 Membrane thickness Steady state kinetics of soluble and mem-Study of — by energy transfer (Peters) brane-bound ——— (Hammes, Hilborn) (233) 465 (233) 580 Membrane transitions Mitochondrial membranes - in Gram-positive bacteria (Ashe. Exchange of phospholipids between micro-Steim) (233) 810 somes and inner and outer — of rat Membrane ultrastructure liver (Blok et al.) (233) 61 Uranyl salts as fixatives for electron micro-Model membrane system scopy. Study of the and phospholipid Interaction between oestradiol and proloss in Bacilli (Silva et al.) (233) 513 gesterone in aquous solutions and in a Membranes -- (Heap et al.) (233) 307 Transient conductance changes induced by Mycoplasma pneumoniae pressure in artificial lipidic — (Parisi, Electron microscopy of solubilized Achole-Rivas) (233) 469 plasma laidwii membrane proteins reag-Membranes of animal cells gregated with _____ glycolipids (Cole et al.) - VIII. Distribution of sialic acid, (233).76hexosamines and sialidase in the L cell Mvometrium (Glick et al.) (233) 247 Studies on smooth muscle plasma mem-Methione transport system brane. I. Isolation and characterization of Amino acid transport in Neurospora crassa. plasma membrane from rat —— (Kidwai IV. Properties and regulation of a --et al.) (233) 538 NADPH-cytochrome c reductase (Pall) (233) 201 Methotrexate-folate interactions Preparation of antisera against cytochrome Model system for the study of heteroexb_z and — from rat liver microsomes (Raftell, Orrenius) (233) 358 change diffusion: - in L1210 leucemia and Ehrlich ascites tumour cells (Goldman) Nerve impulse conduction Physical basis of ----: The irreversible (233) 624thermodynamic analysis of the active state Microsomes Exchange of phospholipids between ----(Schmidt) (233) 765 and inner and outer mitochondrial mem-Neutral amino acids branes of rat liver (Blok et al.) (233) 61 Selective diffusion of - - across lipid bilayers (Klein et al.) (233) 420 Microsomes Preparation of antisera against cytochrome p-Nitrophenyl phosphate b₅ and NADPH-cytochrome c reductase Effect on — on the short-circuiting current in the turtle bladder (Shamoo) (233) 409 from rat liver — (Raftell, Orrenius) p-Nitrophenyl phosphatase (233) 358Microsomes Action of phospholipids and leucocidin on Specificity of the ATP-binding site of of the leucocyte membrane (Na+ + K+)-activated ATPase from brain (Woodin, Wieneke) (233) 702 — (Jensen, Nørby) (233) 395 Non-electrolyte permeation Microsomes Mechanism of — — through lipid bilayers Resolution of fragments of plasma and and through biomembranes (De Gier et al.) sarcotubular membranes in heart muscle (233) 610— (Wheeldon, Gan) (233) 37 Nuclear membranes from mammalian liver. III. Fatty Microsomal ATPase Binding of ATP to brain -----. Deteracids (Stadler, Kleinig) (233) 315 mination of the ATP-binding capacity and Nucleoside phosphatases the dissociation constant of the enzyme-Immunochemical studies of detergent-soluble --- in rat liver plasma membranes ATP complex as a function of K+ concentration (Nørby, Jensen) (233) 104 (Blomberg, Perlmann) (233) 53 Microsomal ATPase Nucleoside transport Effect of urea, sodium and calcium on Effect of dimethyl sulphoxide on ---- in activity in different parts of the L-cells (Collings, Roberts) (233) 459 kidney (Gutman, Katzper-Shamir) (233) Nucleoside transport -- by Novikoff rat hepatoma cells 133 growing in suspension culture. Specificity Microsomal membrane Membrane structure: The reactivity of trypand mechanism of transport reactions and relationship to nucleoside incorporation into tophan, tyrosine and lysine in proteins of the - (Khandwala, Kasper) (233) 348 nucleic acids (Plagemann) (233) 688

0 - 11 1	Dharahaliai da
Oestradiol and progester	Phospholipids
Interaction between ———— and progester- one in aquous solutions and in a model mem-	Action of ——— and leucocidin on the <i>p</i> -nitrophenyl phosphatase of the leucocyte
brane system (Heap et al.) (233) 307	membrane (Woodin, Wieneke) (233) 702
Oestrogens (Teap et al.) (255) 50)	Phosphonyl and phosphinyl analogs of lecithin
Effects of phloretin and synthetic ——— on	Preparation of immunologically responsive
β -galactoside transport in Escherichia coli	liposomes with ——— (Kinsky et al.) (233)
(Batt, Schachter) (233) 189	815
Ouabain	Plasma membrane
Binding of ——— to Na+-K+-dependent	Preparation and properties of — and
ATPase treated with phospholipase (Tani-	endoplasmic reticulum fragments from iso-
guchi, Iida) (233) 831	latedrat fat cells (Avruch, Wallach) (233) 334
Ouabain-sensitive ATPase	Plasma membrane
Asymmetric distribution of ——— activity	Studies on smooth muscle ———. I. Isola-
in rat intestinal mucosa (Fujita et al.) (233)	tion and characterization of plasma mem-
404	brane from rat myometrium (Kidwai et al.)
Palmitate	(233) 538
Renal uptake of p-aminohippuric acid in	Plasma-membrane fragments
vitro. Effects of ———————————————————————————————————	Relationship between g-strophanthin-bind-
(Barác-Nieto) (233) 446	ing capacity and ATPase activity in ———
Peptidoglycan	from ox brain (Hansen) (233) 122
Cell envelope in Proteus vulgaris P 18. Isolation and characterization of the ———	Plasma membranes Immunochemical studies of detergent-solu-
component (Fleck et al.) (233) 489	ble nucleoside phosphatases in rat liver
Permeability	——— (Blomberg, Perlmann) (233) 53
Effect of dimethylsulphoxide on the ——	Plasma membranes
of the lysosomal membrane (Lee) (233) 619	Resolution of fragments of sarcotubular and
Phenylalanine	——— in heart muscle microsomes (Wheel-
Distinction between galactose and ———	don, Gan) (233) 37
effects on alanine transport in rabbit ileum	Polysorbate 80-hexadecane interface
(Frizzell, Schultz) (233) 485	Interfacial barriers to the transport of
Phloretin	sterols and other organic compounds at the
Effects of ——— and synthetic oestrogens	aqueous ——— (Bikhazi, Higuchi) (233)
on β -galactoside transport in Escherichia	676
coli (Batt, Schachter) (233) 189	Potassium
Phospholipase	Intracellular sodium and ——— concentra-
Effect of ——— and trypsin on histidine up-	tions and net cation movements in Chlorella
take by mouse brain slices (Kirschmann et	pyrenoidosa (Shih, Barber) (233) 594
al.) (233) 644 Phospholipase C	Potassium permeability ATP dependence of the Ca ²⁺ -induced in-
Phospholipase C Complete purification and some properties	crease in ——— observed in human red cells
of —— from Bacillus cereus (Zwaal et al.)	(Lew) (233) 827
(233) 474	Progesterone
Phospholipid	Interaction between oestradiol and ———
Physical propreties of bilayer membranes	in aqueous solutions and in a model mem-
formed from a synthetic saturated —	brane system (Heap et al.) (233) 307
in n-decane (Redwood et al.) (233) 1	Protein-phospholipid interactions
Phospholipid	——: Membrane permeability correlated
Uranyl salts as fixatives for electron micro-	with monolayer "penetration" (Kimelberg,
scopy. Study of the membrane ultrastruc-	Papahadjopoulos) (233) 805
ture and ———— loss in Bacilli (Silva et al.)	Proteus vulgaris
(233) 513	Cell envelope in ———————————————————————————————————
Phospholipids Freshores of hoterson missessense	characterization of the peptidoglycan com-
Exchange of ——— between microsomes and inner and outer mitochondrial mem-	ponent (Fleck et al.) (233) 489 Pseudomonas BAL-31
branes of rat liver (Blok et al.) (233) 61	Cell membranes of a marine pseudomonad,
Phospholipid–protein interactions	: Physical, chemical and biochemical
———: Membrane permeability correlated	properties (Franklin et al.) (233) 521
with monolayer "penetration" (Kimelberg,	Renal cortex slices
Papahadjopoulos) (233) 805	Effects of Ca2+ and Mg2+ upon amino acid
Phospholipid vesicles	transport in rat ——— (Brown, Michael)
Nuclear resonance study of the interaction	(233) 215
of L-epinephrine with ——— (Hammes,	Sarcotubular membranes
Tallman) (233) 17	Resolutions of fragments of plasma and

- -- in heart muscle microsomes (Wheelcoccal lipid monolayers (Gale, Llewellin) don, Gan) (233) 37 (233) 237 Sterols Short-circuiting current Effect on p-nitrophenyl phosphate on the Interfacial barriers to the transport of —— in the turtle bladder (Shamoo) (233) and other organic compounds at the aqueous polysorbate 80-hexadecane inter-409 face (Bikhazi, Higuchi) (233) 676 Sialic acid Membranes of animal cells. VIII. Distribu-Streptomyces hydrogenans tion of _____ hexosamines and sialidase in Active transport of glumate in -the L cell (Glick et al.) (233) 247 Studies on uptake and pool size, and their interrelationship (Cross, Ring) (233) 652 Membranes of animal cells. VIII. Distribug-Strophanthin-binding capacity tion of sialic acid, hexosamines and -Relationship between --- and ATPase in the L cell (Glick et al.) (233) 247 activity in plasma-membrane fragments Small intestine from ox brain (Hansen) (233) 122 Relationship between concentration and Sugar movements uptake by rat ----, in vitro, for two Role of unstirred layers in control of micellar solutes (Hoffman, Yeoh) (233) 49 across erythrocyte membranes (Naftalin) (233) 635 Sodium Effect of luminal pH on the absorption of Thiocapsa floridana water, —— and chloride by rat intestine - ; cytological, physical and chemical in vivo (Rousseau, Sladen) (233) 591 characterization. I. Cytology of whole cells and isolated chromatophore membranes Sodium (Takacs, Holt) (233) 258 Effect of urea. - and calcium on microsomal ATPase activity in different Thiocapsa floridana parts of the kidney (Gutman, Katzper---; cytological, physical and chemical characterization. II. Physical and chemical Shamir) (233) 133 Sodium characteristics of isolated and reconstituted Intracellular --- and potassium conchromatophores (Takacs, Holt) (233) 278 centrations and net cation movements in α-Toxin Lipid monolayers. Interactions with sta-Chlorella pyrenoidosa (Shieh, Barber) (233) phylococcal ---- (Buckelew Jr. and Cola-(Sodium + potassium)-activated ATPase cicco) (233) 7 Specificity of the ATP-binding site of -Transport from brain microsomes (Jensen, Nørby) Interfacial barriers to the — — of sterols and other organic compounds at the aque-(233) 395 (Sodium + potassium)-ATPase ous polysorbate 80-hexadecane interface (Bikhazi, Higuchi) (233) 676 Characterization of ——— isolated from Transport ATPase embryonic chick hearts and cultured chick heart cells (Sperelakis, Lee) (233) 562 Effect of hydroxylamine on - (Sachs et al.) (233) 117 (Sodium + potassium)-ATPase Purification and characterization of - -Trypsin I. The influence of detergents on the activity Effect of phospholipase and ——— on of (Na+ - K+)-ATPase in preparations histidine uptake by mouse brain slices from the outer medulla of rabbit kidney (Kirschmann et al.) (233) 644 Uptake (Jørgensen, Skou) (233) 366 (Sodium + potassium)-ATPase Relationship between concentration and Purification and characterization of by rat small intestine, in vitro, for II. Preparation by zonal centrifugation of two micellar solutes (Hoffman, Yeoh) (233) 49 highly active (Na+ + K+)-ATPase from the outer medulla of rabbit kidneys (Jørgensen Effect of -----, sodium and calcium on microsomal ATPase activity in different et al.) (233) 381 parts of the kidney (Gutman, Katzper-Sodium-potassium-dependent ATPase Shamir) (233) 133 Binding of ouabain to — - treated with phospholipase (Taniguchi, Iida) (233) 831 Water Effect of luminal pH on the absorption of (Sodium-potassium)-stimulated ATPase — —, Na- and Cl- by rat intestine in Preparation and properties of an isolated vivo (Rousseau, Sladen) (233) 591 plant membrane fraction enriched in -----(Lai, Thompson) (233) 84 Water diffusion in lecithin-water and lecithin-cho-Staphylococcus aureus Effect of unsaturated fatty acids on asparlesterol-water lamellar phases at 22° (Gary-

tate transport in --- and on staphylo-

Bobo et al.) (233) 243